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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-996

AN ANALYTICAL TREND STUDY OF PROPELLER WHIRL INSTABILITY

By John L. Sewall

SUMMARY

This paper reports the results of an analytical trend study that
extends the work done by Reed and Bland in NASA Technical Note D-659
and Houbolt and Reed in Institute Aerospace Science Paper No. 61-34 on
the precessional instability of a simulated engine-propeller configura-
tion. Primary attention is given to the applications of simplified
linear equations which are derived and which define the borderline con-
ditions between stable and unstable motion in terms of damping coeffi-
cients in pitch and yaw. The equations as derived apply to the case of
separate elastic centers in pitch and yaw, and the results of some studies
are included to show the effects of separate elastic centers. For the
case of the common elastic center, the paper confirms the results reported
in the two papers mentioned previously as to stiffness, damping, elastic-
center location, and mass- or inertia-density ratio over a broader range
of these parameters than wes previously considered. The present study
also includes the effects of polar-to-pitch (or polar-to-yaw) moment-of-
inertia ratio and the effects of aerodynamic forces on whirl frequency
at extreme values of yaw-to-pitch frequency ratio. The occurrence of
engine-propeller divergence at speeds less than the critical whirl speed
is shown to be unlikely unless the system becomes very weak in one direc-
tion (that is, pitch or yaw) relative to the other. The effects of the
significant whirl parameters are shown in various figures which summarize
the analytical trends.

INTRODUCTION

For most piston engines presently in service, vibrations due to
engine operation are isolated, insofar as possible, by sets of spring-
mountings equally spaced in a ring encircling the engine in the manner
recommended by Taylor and Browne in reference 1. 1In analyzing the dynam-
ics of this system, these writers recognized that an instability could
occur due to the interaction between gyroscopic and aerodynamic forces
and moments acting on the engine-propeller configuration with the pro-
peller spinning. This instability, which has come to be known as pro-
peller whirl, is characterized by a wobbling motion of the propeller
shaft with the propeller hub describing, in general, an elliptical path.



Power plants with spring-mounting systems similar to that described in
reference 1 have apparently had sufficient margins in spring stiffness
and damping to be free of this whirl instability within their respective
ranges of operation. Consequently, propeller whirl has not been regarded
as a particularly critical aircraft dynamics problem.

However, with the introduction of radically different engine
mountings, 1ncreased engine-power-to-engine-weight ratio, increased vibra-
tion isolation requirements, and with the continued use of long overhung
nacelles, this instability is once again of interest for such propeller-
driven aircraft. Recent work on the problem is reported in references 2 ]
and 3 which deal with simplified representations of the engine-propeller
system and provide an understanding of the basic nature of the problem. ¢
Effects of the wing are not included, and the motion is described by two
degrees of freedom in pitch and yaw with aerodynamic forces and moments
based either on the propeller coefficients of Ribner (ref. 4) or on the
coefficlents derived in reference 3. Both references 2 and 3 are mainly
concerned with solutions of the stability equation defining the border-
line conditions between damped and undamped motions but also give atten-
tion to the transient response of the system obtained by solutions of -
the equations of motion on an analog computer.

The purpose of the present paper is to report an analytical trend
study covering the ranges of dimensionless parameters listed in table I,
which extends the ranges covered in references 2 and 3. The same ideal-
ized representation as that of reference 2 is considered, although the
solution of the stability equation is presented in somewhat different
form, and provision is made for separate elastic centers in pitch and
yaw. Some calculations were made to show the effects of separate elastic
centers, but except for these cases, all the analytical trends presented
are based on a common elastic center as was done in references 2 and 3.
Damping in the structure is represented as viscous damping, and linear
relations between this type of damping and total damping are derived from
the stability equation. These linear relations are used to show the
effects of such dimensionless parameters as yaw-to-pitch frequency ratio,
inertia-density ratio, and advance ratio. Consideration is also given,
as in reference 3, to the static aerocelastic phenomenon of divergence
for this idealized engine-propeller combination.

SYMBOLS

8y-..8;) coefficients of differential equations of motlon, defined
" by equation (1)

b blade width, ft (See fig. 5.) -
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aerodynamic and damping contributions to whirl frequency

(eq. (8a)), defined by equations

total damping coefficient in nth whirl mode, sec”

coefficients of equation (2)

(8b) and (8c)
1

pitching-moment derivative with respect to yaw

pitching-moment derivative with respect to pitching velocity

side-force derivative with respect
given in ref. L; approximated in

side-force derivative with respect
side-force derivative with respect

propeller diameter, ft

moment arm from propeller plane to
pitch, ft

moment arm from propeller plane to
yaw, ft

coefficient of divergence equation

to pitch (not actually
refs. 2 and 3)

to yaw

to pitching velocity

effective elastic center in

effective elastic center in

(eq. (11))

quartic stability equation (eq. (2))

circular propeller whirl frequency
ual/ 21, cps

in retrograde mode,

uncoupled circular freguency in pitch, we/Qﬁ, cps

viscous damping coefficients in yaw and pitch, representing

damping in structure and defined

by c/cc where c¢ 1is

usual viscous damping coefficient (proportional to velocity)
and c. 1is critical damping coefficient

coefficient of divergence equation

(eq. (11))

mass polar moment of inertia of propeller about axis of

rotation, ft-1b-sec?



Iy mass moment of inertia of engine-propeller combination in
pitch about elastic center in pitch, ft-1b-sec?

IZ' mass moment of inertia of engine-propeller combination in
Yaw about elastic center in yaw, ft-1b-sec®

J advance ratio, V/nD

kg spring constant of system in pitch, ft-lb/radian

ky spring constant of system in yaw, ft-1b/radian

K1 intercept of linear equation (7), defined by equation (T7b)

Ko slope of linear equation (7), defined by equation (7a)

Kp, K3 quantities defined by equations (7c¢) and (7d)

Pl,PE,P3,... aerodynamic quantities defined following equation (7o)

n propeller rotatlonal speed, rps

oo

divergence parameter, see equation (11), K<&r -

variable in Laplace transform

alrstream velocity, ft/sec

Thrust

oVeD?

coordinate system (see fig. 1)

thrust coefficient,

pitch angle, radians

blade angle, deg (see fig. 5)

; where numerator is mass moment

inertia-density ratio 22?2122
Y

of 1nertia of a cylinder of air of length D about propeller
axls of rotation

T ~J\N = 4



N =J\J

I
u inertia-density ratio ————z;——3 where the denominator 1s mass
npDhe /32

moment of inertia of a cylinder of air of length e about
propeller axls of rotation

1Y) propeller rotational speed, radians/sec
Wy frequency of nth precessional mode of propeller shaft (or
simply, propeller whirl frequency), radians/sec
wg uncoupled frequency in pitch, \/igy radians/sec
Y
p alr density, 1b-se02/ftu
¥ yaw angle, radians
ww uncoupled frequency in yaw, - radians/sec
VI,
Subscripts:
0 denotes zero 1lift condition on propeller blsade (See fig. 5.)
0.75R denotes property of propeller blade at three-fourths of pro-

peller radius (See fig. 5.)
D divergence
Dots over symbols indicate derivatives with respect to time. Primes
denote quantities associated with the elastic center in yaw.

ANALYSIS

Development of Stability Equations

The dynamic behavior of an elastically mounted propeller-engine
system in an airstream is represented by a two-degree-of-freedom system
in pitch and yaw shown in figure 1. The equations of motion are con-
venlently written in the form:

|
(@)

6 + alé + a0 + a5$ - apy =

i
(@]

o+ bl¢ + Doy - b5é + by =



where the coefficlents are defined as follows:

I 2
D'V
a; = ZCG(DG - E(Cmq -2 i,?— CYW) w
e
D
ap = (1)82 - I 8Ii CY\I!

5.3 - IY 8IY e

b
oy - zp_D_VE(me - or,)

IXQ + npDSeVCig

CY e
C +—3_ X< C
my T o e D Yp

f (1)

4o (1
b1 = hyty 16Iy \I,
npD GVQCY e, T
- y(Cy Iy
27 % 81y e Ig'

Ip' |1y 81y

. =ze91€i(c
N 81y \Iz'/\ ™V

c
Iy | I® opdev v Yg Sy e
+ Coy, + 5 5= - = S Cy,

e
Ve
- ?BCY9> J

It is noted here that the derivation of the foregoing equations may
be obtained in the same manner as that given in reference 2 except for

the introduction of the ratios
ence of separate elastic centers
effective angles of attack given
rewritten as

3

and

< |

IY/IZ' and e,/e Dbecause of the exist-

in pitch and yaw. For this system the
by equation (11) of reference 2 may be

P
A
ey

A

(S RN RSy
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where the barred symbols denote effective angles of pitch and yaw. The
corresponding aerodynamic moments in pitch My and yaw Mg become

MY = MY)p - eFZ

Mz' Mz’p + eWFY

rather than equations (13) of reference 2, where MY,p and MZ D are
2

the aerodynamic moments about pitch and yaw axes in the propeller plane
and Fg and FY are vertical and side forces, respectively, acting in

the propeller plane. The existence of separate elastic centers also
destroys the inertial symmetry that 1s usually assumed for the case of
the common elastic center by introducing the moment of inertia in yaw IZ'

not equal to the moment of inertia in pitch Iy. The stabllity of the

system is determined from the roots of the following characteristic
equation which may be conveniently obtained by applying the Laplace
transformation (see ref. 5, for example):

F(s) = sl+ + 0583 + c252 +Cqy8 + ¢ = 0 (2)
where
\
C3=al+bl
02-'-’

8.2 + b2 + &lbl + &5b5 >

cq alb2 + a2b1 - aub5 - a§bh

co a2b2 + ahbh

"

-

Within the range of parameters for the physical system considered in
this study, the roots of equation (2) have been found to occur in the
complex conjugate pairs

s = By * lay, (n =1, 2)

where B, 1s a total damping coefficient and w, the frequency of
oscillation. Positive values of By indicate an undamped or unstable
condition. Two solutions are found for the whirl instability; B; and
wy are found to correspond to wobbling motions of the propeller shaft

around an elliptical path that 1s traversed in the opposite sense to the



propeller rotation direction whereas B2 and Wy correspond to a
wobbling direction that is the same as the propeller rotation.

Exact solutions of equation (2) have been obtained for various com~
binations of parameters. Values of B, for the lowest mode have been

obtained as a function of g and CW’ and typlcal plots are shown in
figure 2 for the special case of ey = e and Iy = I,. The consistently

linear trends appearing in the figure suggest the existence of a linear
relation between total damping and the damping in the structure. Such

a relation may be obtained by the following considerations: Equation (2)
is assumed in the factored form

(e - B1)® + 2] [(5 - B)® + 0,7 = 0

corresponding to the complex conjugate roots noted previously. By equating
like coefficients in this expression with those in equation (2) and
neglecting all terms of B, of higher order than the first, it is found

that

2 2
_ %€ T ®n 3
®©n - Cp

where the whirl frequency wy 1s given by

wp? = %(c2 + 022 - Ltco) (5)

The negative sign preceding the radical in equation (5) gives ®w; and
the positive sign, ws. For all cases studied in this paper and in

references 2 and 3, the lower whirl mode (or retrograde mode) corre-
sponding to Bl and wy has been found to be the critical mode; that

is, 1t occurs at the lowest airplane forward speed.

For the case of neutral stability, defining the borderline condi-
tion between damped and undamped motion, Bl = 0, and hence,

ey = %y = 0 (6)

Substitution in equations (5) and (6) for the ¢ and a values from
equations (1) and (3) gives the following linear relations between the
damping coefficients in pitch and yaw for neutral stability:

3\



2§¢ = 'Kb(2§e) + Ky (7)
where
Ko =§2 (7a)
T2as I I IyQ
Hewg n ‘ Y Q@J '
K. = P-K — P, 'Ky + =— — =|=——(P P
1 @y . 12 Y 17 103 I,' ®g H[IYBS( 2 2 )
(De 5
20 d ' !
* 5 ag (2P * B PB)} (70)
e 2 2fe, I
(% il 1o J\°[¢v Y
Ky = ((T)E) - (J;'é') - ;I(me 1‘[) <‘§‘ _I__Z_')cYW (7¢)
2
© /0 JV
G-t (E) - &% %) o, (72)

The quantities Pl’ P2, P5’ etc., are propeller aerodynamic terms
defined by
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The characteristics of these propeller aerodynamic terms will be dis-
6%

cussed subsequently. The term (;l> is given by
ot}

oy \2 2 1o\l 1
i).l_‘ = Y 1+ (‘L.i\ll- + -X_ __Y_'. + hg g u_\k + Al
wg) 2 ®g Iywg) Iz 07V wg

2 2 e T 2/ T
210 IV oy [, ¥ X}, 100 ey Iy [ Fpp,
AO u<a)e If) CY¢< 5 + e Iz'> + e ﬂ> kCY\If -y E'— + -—2- P2P2 > (8C)

Lg

(In the application of egs. (7) and (8), it develops that simplified

forms can be used, as indicated later in eqs. (13).) If structural

damping as considered in reference 2 is assumed in place of viscous
W

w
damping as assumed herein, the relations gg = 2§e(5£> and gy = EQW(ai)’
G

based on equation (27) of reference 2, are introduced into equations (7).

(NG IS NG Sy
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For the speclal case of ey = ¢€ and IY = IZ', equations (7) are

plotted in figure 3 for the three cases congidered in figure 2. In cal-
culating a)/ @g, the terms involving g and (, in equations (8a)

and (8b) were neglected. The circular points represent values of Ce
and §W crossplotted from figure 2 for By = 0 in sapplication of equa-

tion (2). These points are included in order to check the adequacy of
equations (7) for determining the region of instability, which 1s the area
below the line and bounded by the ordinate and abscissa in a given case.
Also compared in figure 3 are the frequency ratios wl/ne calculated by

equations (2) and (8) for the three values of uy /vy. Equations (7) are
seen to predict somewhat steeper slopes and larger values of EQW than

does equation (2) and may accordingly be regarded as conservative in the
sense that the regions of instability are slightly larger than those of
equation (2). Since these differences are small, equations (7) may there-
fore be considered satisfactory for defining the borderline condition
between stability and instability for the range of parameters covered in
the present study.

Conditions for Eliminating Regions of Instability

One way for an engine-propeller combination to be free from propel-
ler whirl instability is for the triangular area of instability shown
in figure 3 to be eliminated completely. This may be done by simply
setting the intercept Kj; = O in equation (7), so that the linear neu-

tral stability boundary becomes a line through the origin, and the fol-

lowing quadratic equation in v is obtained:
2 %
2 I e
v /¥ ' ' - S 4
(ZD ) ik, '>[2(P2P3 + Pp'Ps) CYW<P1 + = Py
5 Wy Z .
2 2 2

I, Iy wy W I m
+=/DV 5 (P + B2') +P1<UT> ‘(—l'> i 1'<—l> =0
D wy /T2 T 0 \ . g
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®
The quantity (5;> in this equation is obtained from equation (8a) con-
¢
sidered without the aerodynamic and damping terms; these additional terms
are shown in reference 2 to have a negligible effect on the precessional

frequency wy for a system with & common elastic center. Results of

sample calculations with equation (9a) are shown in figure L. As may be
seen, satisfactory solutions can be obtained by simply neglecting the

Iy /I
quadratic term in V as long as the gyroscopic parameter X _xﬂ_ is
Iz' \Iywg

e
not too small and ?g is not too large.

R N I e

For a completely symmetrical system in which g% =1 and

= = = 1, neglect of the quadratic term in equation (9a) and introduc-

Z
tion of equations (8) with Ag = A] = 0 leads to the following simple
stability criterion for a system to be free of propeller whirl instability:

2
P I:§ I,Q
-2V 1y < X ) . S (9b)

where it may be noted that the aerodynamic terms are on the left-hand
side of the equation, and the right-hand side contains only mechanical

I,0
equation (9b) reduces to equation (26)

terms. For small values of

of reference 2 when the damping coefficient @eg equals zero.

Divergence Equation

The conditions for neutral stability with respect to static diver-
gence 1s obtained from equation (2) by letting s = 0 so that

Co = 8gby + &b =0 (10)

From the definitions of as, by, 8y, and bh given in equation (1) the

following quadratic equation may be obtained:

Pyt - PR + G = 0 (12)
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2 2
o Jp Ip
where the divergence parameter Pp = Kj— — = K —— with
(De b1 Dy
2 6
K =£]_)_=TIDD5
e 321y

and

&
%R% CY\,,)E L FoPa '}

The application of equation (11) is discussed in the following
section along with the dynamic whirl equations. However, at this point,
. ay eW_IY _
it may be worth noting that, when — =1 and —+ = —— = 1, equa-

Wy ¢ Iz

tion (10) becomes

2 2 -
a2 +23.)+ =0
which obviously has no real roots unless as and 8, are both zero.

However, the condition that a), be zero (except for the trivial case
of Pp = 0) when combined with a, =0 yields

CYO
P2 = —o (12)

Cn.Cy
Ty ty

It should be noted in this equation that for each value of J, there is
c

Just one value of %P given by % = EE&’ for which divergence can occur.
Y

8
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Note also that if CYB 1s assumed to be zero, ), cannot be zero unless
me is zero, which in turn requires J +to be zero. Thus, for a com-

pletely symmetrical engine-propeller combination, dlvergence based
solely on Ribner coefficients (ref. 4) cannot occur.

APPLICATION OF WHIRL STABILITY AND DIVERGENCE EQUATIONS

With the exception of the results given in figure 2, most of the
propeller-whirl trends presented in this paper were obtained by use of
equations (7) for the ranges of dimensionless parameters listed in

e I
table I for the case of the common elastic center (Eg = —XT = l). A

I
Z
few calculations were performed for the case of separate elastic centers
e I
using the tabulated values of ;g and 'XT which were selected arbi-
Z

trarily. The choice of the remaining parameters in table I was largely
influenced by a compilation of available (though, unfortunately, incom-
plete) information on pertinent engine-propeller characteristics on a
number of plston-engine and turbopropeller power plants in service over
a number of years. Most of the propeller aerodynamic coefficients used
in these calculations are based on the blade characteristics of the same
propeller used in references 2 and 3 and currently in service on com-
mercial alr transports. These blade characteristics are reproduced from
reference 2 in figure 5(a), and the propeller is designated as propel-
ler A. Some calculations based on the blade characteristics of propel-
ler B, also shown in figure 5, were performed. These characteristics
apply to a propeller that was widely used from 1945 to 1950. The ranges
of propeller advance ratio J and blade angle at the 3/& radius (BO.T5R)

are shown in figure 5(b) for both propellers for the windmilling (or
nonthrusting) condition.

The propeller aerodynamic coefficients based on the propeller
characteristics shown in figures 5(e) and 5(b) are listed in table II.
The side-force coefficient with respect to pitch CYG’ which is not

given by Ribner in reference 4 but is approximated in references 2

and 3, was omitted in all but a few calculations concerned with the case
of the separate elastic centers, with divergence, and for the parsmetric
relation for systems free of propeller whirl, given by equation (9a).
Values of CYG given in table II were obtained from reference 2 by

following the approximate scheme given therein.

=\



N PSRN T

15

Before presenting analytical trends in propeller whirl boundaries,
it 1s worth noting the following acceptable approximations to the slope
Ko and intercept K; 1in equations (7) which arise from the negligible

effect of propeller aerodynamic coefficients on the whirl frequency:

& - @)
Ko ~ Aol —\8/ (138)

where
2 2 2 2 2
2 2
U.i =~ .]_" 1 + (li + .Il_ E)&Q_ - 1 + (Ui) + Il. .IX_Q_ - U:y_
Wy 2 Wy ) Iz'\Iywg ®o/ Iz \Iy®g 8
(13c)

Cases in which the effect of propeller aerodynamics on whirl frequency
is not negligible are illustrated in figure 6 for extreme values of

(DW

= and <, However, even for these cases the corresponding effects on
0

the neutral stability boundaries are still small.

Parametric Whirl Instability Trends

In determining the effects of the various dimensionless parameters
on propeller whirl, the condition of symmetry in damping has been chosen
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in most cases. A few cases have been examined for extreme unsymmetrical
conditions. The trends for the system with a common elastic center are

Q
presented first, except as noted below for the effect of Tg on whirl

frequency.

Effect of rotational-to-pitch frequency ratio é}u— Initial con-
0

sideration is given to é%- because 1t relates the propeller rotational

speed to engine-nacelle stiffness and is used as a basis for evaluating
other parameters. The effect of this parameter on whirl frequency is
shown in different forms in references 2 and 3. In the present paper

I I
2 is combined with the i1nertia ratios T% and TXT into an angular
Z

I X‘Q
momentum ratio EXT E———-, and the effect of this gyroscopic parameter
Z \}Y®e

on the natural whirl frequency is shown in figure 7 for both forward
and retrograde whirl modes of the system for the general case of sepa-
rate elastic centers in pitch and yaw.

Figure 8 is a stability chart in which the damping coefficient 2f

is shown as a function of J for various values of gﬁ_ Four values
8]

of iL are shown. The parameters held constant are & = 0.00978,
3]

I
TK = 0.1184%, % = 0.235. The values selected for these parameters are
Y
considered to be in the center of the range of values of current interest.
Variations 1n each of these values in turn are studied for fixed values

of the remsining parameters, and these variations are made with g% =1
(the solid curves labeled a, b, ¢, and d).

Figure 8 shows that the regions of instability increase with
increasing %% and with increasing J. Negative values of 2{ in fig-
ure 8 indicate conditions completely free of propeller whirl instability.
It is evident that é% can be low enough for the system to be stable
throughout the range of values of J.

BEffect of yaw-to-pltch frequency ratio g%.- This is one of the

fixed parameters in figures 9 to 11l. An indication of the effect of

AN =\ b
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frequency ratio itself with other parameters held fixed can be obtained
by examination of figure 8. As é%- is increased, the regions of insta-
bility defined by frequency ratios less than 1 tend to become somewhat
larger than the regions at frequency ratio 1. For é% < 2.5 the insta-
bility region at g% = 1.0 1is greater than the regions for the other

frequency ratios, but for é% 2 2.5 a reversal of this trend is indi-
cated for gy-< 1. Further consideration of frequency-ratio effect is
0

discussed later in connection with divergence.

Effect of inertia-density ratio &.- The effect of inertia-density

ratio is shown in figure 9. The curves labeled a, b, ¢, and d are the
same as curves a, b, ¢, and d of figure 8. The increasing region of

instability with larger values of & indicates that for a given engine-

propeller combination more structural damping is required to stabilize
the system at lower altitudes than at higher altitudes. It 1is also
evident that an undamped system is essentially insensitive to inertia-
density ratio, and a small amount of structural damping has a strong
stabilizing effect at low values of inertia-density ratioc. These effects
are similar to those found in reference 3 in which density was part of

a mass-density ratio based on the mass of the propeller.

I
Effect of polar-to-pitch moment-of-inertia ratio T&'- Figure 10
Y

I
shows effects of TX3 about the same curves a, b, c, and d, on the region

of instability, and it is evident that more damping 1s required for sta-

I
bility as the magnitude of Tx increases. An increase in ilnertia ratio
Y
may be visualized as being caused by shortening the engine for a given
propeller, or using a heavier propeller on a given engine.

Effect of %.- This parameter relates the propeller diameter and

the moment arm between the plane of the propeller and the effective
elastic center of the system. Figure 11 shows that the smaller the

value of %? the greater the amount of structural damping required for

stability. Thils result is essentially the same as that found in refer-

ences 2 and 3. Decreasing % for a given propeller is equivalent to
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moving the elastic center closer to the propeller plane or to increasing
the propeller dlsmeter for a fixed elastic center location. With less

damping required as % is raised, it is evident that % can be high

enough for the system to be free from propeller whirl throughout the
J-range. It is shown later, however, that the extent to which % can

be raised actually is limited by the divergence boundary.

It should be noted that the effects shown in figure 11 are aero-

dynamic effects, since it has been assumed that % can be changed with-

out affecting either the polar or pitching moments of inertia of the
system. However, when the inertial change was accounted for (due to
changing the moment arm e), the regions of instability were only
slightly enlarged from those shown in figure 11; thus the dominance of

the aerodynamic effect of varying % is indicated.

Effect of thrust coefficient.- Most of the trends presented in this
paper apply to the windmilling case, that is, the case of zero thrust
(Tc = 0), and the work of reference 2 has shown thrust to have a minor
effect on the propeller-whirl neutral stability boundaries. Brief
attention was also given to this matter in the present study, and some

results of varying T. from -0.0l to 0.036 are shown as a function of
£% in figure 12. Variation of thrust coefficient over this range either
positive or negative is seen to have a small effect on the region of
instability.

Analytical trends for a different propeller.- As previously noted,
most of the work reported in this paper is based on the blade character-
istics and advance ratios for propeller A as given in figures 5(a) and
5(b). Neutral stability boundaries and whirl frequencies based on the
blade characteristics and advance ratios for propeller B are compared in

figure 13 with stability boundaries and whirl frequencies for propeller A.

The results of the calculations show a somewhat smaller region of insta-
bility for propeller B than for propeller A at a low value of é;- and

9
as é%- increases, the sizes of the instability regions for the two pro-
pellers become indistinguishable. The distinction between the two pro-

pellers appears to be even less significant insofar as whirl frequency
(shown in ratio form in the lower part of the figure) is concerned.

Effects of unsymmetrical damping.- Up to this point only the case
of symmetrical damping has been considered (that is, CW = {g as pre-

viously noted). When the damping coefficients in pitch and yaw are
unequal, more damping in the mode having the lower stiffness is required
for neutral stability (that is, more damping in pitch is required for

=1\
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gﬂ < 1, and conversely, more damping in yaw than in pitch is required
)

for %ﬁ > 1.0). This situation is evident in figure 3 and is also shown
Wy

in figure 14 for the full J-range of propeller A for the extreme cases

in which the damping in first one degree of freedom and then the other is
assumed to be zero. The fixed parameters for these curves are the same
as those in figure 8, and the reference curves b, ¢, and d for figure 8
are reproduced in figure 1l4. As may be seen, the frequency ratio does
not have to be very far from unity for the damping required for neutral
stability to be quite large when the damping in one of the modes 1s com-
pletely eliminated. This result is somewhat similar to that found in
reference 2 for less extreme damping ratios.

Effect of separate elastic centers in pitch and yaw.- The parametric
whirl trends presented up to this point have been based on a common
elastic center. The results of some calculations for the case of sepa-
rate elastic centers in pitch and yaw are shown in figure 15. The moment

e
arm ratio ?¥ was arbitrarily varied from 0.2 to 2.0, and for each value

I
of this ratio chosen, a corresponding value of the inertia ratio TZ—
Y

was determined by using 1nertial characteristics representative of an
engine-propeller system currently operational. The solid curves, which
were determined by use of the approximate relations given by equa-

1

e I
tions (13) for ?g = T%— = 1 are designated by a', b', and so forth,
to denote the fact that they are essentially the reference curves a, b,
c, and d but are based on the nonzero values of CYe given in table II.

A comparison of the solid with the dashed curves shows an increase in

e
the region of instability for ?¥ < 1 and a decrease in the region of
e
instability for Eg >1 as £L increases.
]

Analytical Divergence Trends and Comparison With Whirl Trends

Divergence boundaries calculated by use of equations (11) and (12)
are presented in figures 16 to 18 and are compared with whirl trends in
figure 19.

Vp
D
2%
for three advance ratios and a wide range

3

Divergence.- In figure 16 the divergence parameter Pp =

e

is shown as a function of D
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2
of stiffness ratios (§m> . The region of instability lies within the
3]

semiclosed curves for all stiffness ratios, the region being largest for
extreme stiffness ratios and decreasing as the stiffness ratio approaches
one. At stiffness ratios not far from 1 the curves close, and the diver-
gence region becomes a narrow elongated band bounded by an upper as well

as a lower positive value of % (as, for example, in the case of

d

Q§y> = 0.9 1in the lower right plog. At a stiffness ratio of 1 for the
8

case of the common elastic center, this region shrinks to a point which,

as previously noted, is determined by equation (12) for each value of J

and corresponding nonzero value of the lift-lag coefficient CYG'

Increasing J results in an increase in the region of instability and

extends it to lower values of %p this change is equivalent to shortening

the distance between the propeller plane and the elastic center. It nay
also be noted in figure 16 that the effect of a nonzero value of CYG’
compared with that for CYB = 0, is to increase the size of the diver-

gence region by an amount that increases as the stiffness ratio gets
closer to 1. This effect is opposite to that found for propeller whirl
in reference 3. In other words, the inclusion of the lift-lag term in
the divergence and whirl equations has the effect of destabilizing an
engine-propeller combination in divergence and stabilizing it in whirl.

The divergence behavior at a stiffness ratio of 1 of both propellers
considered in this study is shown for the case of the common elastic
center in figure 17, which is a plot of equation (12). As may be seen,
the divergence speed parameter for propeller B is somewhat higher than
that for propeller A.

For the case of separate elastic centers the regions of divergence
instability have the same general shapes as those shown in figure 16.

For zero stiffness ratio, the values of % where Pp 1is a maximum shift

to the right for Z} < 1 and to the left for Zg > 1, and the maximum
value of Pp decreases for %g < 1 and increases for %} > 1. At a
stiffness ratio of 1, divergence occurs at more than one value of %
as 1is shown in figure 18, which also shows the region of divergence
instability to lie within semiclosed regions for %¥ <1 and within

; Sy s
completely closed regions for = > 1. Moreover, for = > 1 divergence

AT NI
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occurs at values of Pp that are somewhat lower than the single value
e

of Pp at ?g = 1. At other stiffness ratios, divergence regions are

completely closed between a range of stiffness ratios that is small for
e e

low values of ?g and increases rapidly as ?g increases. (See, for

example, table IIT for J = 2.65.) Outside of this range of stiffness
ratios the divergence regions are semiclosed as in figures 16 and 18.

Comparison between divergence and whirl boundaries.- Whirl boundaries
are compared with divergence boundaries for the case of the common elastic
center in figure 19 for a wide range of frequency ratios and two widely

separated values of %. The divergence boundaries are seen to be well

above the whirl boundaries except at low frequency ratios where both
boundaries intersect. The whirl boundaries apply to both damped and
undamped systems and the lift-lag term Cy, has been omitted from the

divergence as well as the whirl calculations. The figure shows diver-
gence rather than whirl to be critical for a system considerably weak

in yaw relative to pitch [ corresponding to low gg) the divergence

increases.

o~

region extending further into the whirl region as

Remarks on Effect of Viscous Damping

The stabilizing effect of viscous damping on propeller whirl has
been considered both in this paper and in references 2 and 3 along with
the effects of other significant parameters. The whirl trends shown in
figure 19 for various nonzero damping coefficients are considered worthy
of added observations with respect to frequency ratio and %. The trends
indicate that for a given % the effect of damping is about the same at

W
all frequency ratios and bhecomes greater for Bi 2 1.0 as the distance
S]

between the propeller plane and effective elastic center decreases (that

is, as % decreases). Only at the low frequency ratios near the diver-

gence boundaries does the damping effect tend to diminish, as indicated
by the convergent tendencies both of the neutral stability boundaries

in the upper part of the figure, and particularly, of the frequency trends
in the lower part of the figure. Note also that the damping required to

stabilize the system with lower is roughly more than twice as much

=2
D
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as that required to the system with higher % at nearly all frequency

U)ly

ratios 55. This behavior is consistent with the effect of and

=
D
damping noted earlier for a frequency ratio of 1.

CONCLUDING REMARKS

An analytical trend study that extends previous works by Reed,
Bland, and Houbolt (NASA TN D-659 and IAS Paper No. 61-34) on propeller
whirl instability is reported herein. Most of the present effort is
concerned with applications of simple linear equations defining the
borderline conditions between stable and unstable motion in terms of
viscous damping coefficients in pitch and yaw. Results of these appli-
catlons are shown for wide ranges of the significant whirl parameters
in a number of figures summarizing the analytical trends. These results
confirm the results of previous studies in indicating the strong depend-
ence of propeller whirl instability on stiffness, damping, and elastic
center (or pivot location) of simplified engine-propeller combinations
cantilevered at their elastic centers. 1In addition, the following con-
clusions appear to be Justified:

1. Increasing the polar-to-pitch (or yaw) moment-of-inertia ratio
increases the region of propeller whirl instability.

2. Aerodynamic effects on the frequency of propeller whirl insta-
bility are found to have a small effect on the neutral stability bound-
aries even at extreme values of yaw-to-pitch frequency ratio. The aero-
dynamic effects are also small when the distance between the propeller
plane and the effective elastic center is large relative to the propel-
ler diameter.

5. For an engine-propeller system with different elastic centers
in pitch and yaw, the region of whirl instability tends to decrease
when the distance from the propeller plane to the most rearward elastic

center is increased. Conversely, the instability region tends to increase

as the distance from the propeller plane to the most forward elastic
center decreases.

k. The occurrence of engine-propeller divergence at speeds less
than the critical whirl speed is unlikely unless the system becomes very
weak 1n one direction (that is, pitech or yaw) relative to another. If
the side-force coefficlent with respect to pitch angle is omitted in
the calculations, divergence cannot occur for a completely symmetrical
system (that is, one for which stiffnesses as well as moments of inertia

N =3 \Jt



25

are respectively equal in the pitch and yaw directions, and the system
has a common elastic center).

5. Whereas an engine-propeller system with a common elastic center
and equal stiffnesses in pitch and yaw diverges for each advance ratio
at Just one value of the ratio of the distance between the propeller
plane and the elastic center to the propeller diameter, the system with
separate elastic centers diverges over a wide range of this ratioc for
each advance ratio.

langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., December 15, 1961.
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TABLE I.- RANGES OF DIMENSIONLESS PROPELLER WHIRL PARAMETERS

COVERED IN INVESTIGATION

1
o 0.003%6 to 0.04
Ix
Tf 0 to 0.33
Sfor whirl . o v v v v e e e e 0.125 to 0.8545
D
g for divergence . . . . . . . . . . L oL ... 0 to 3.52
D

forwhirl . . . . . . . . . .. ... 0.1 to 2.0
Oy

£L (each value fixed for range of J; for example,

see fig. 8) . . . . L L o 1.26 to 3.15

gL (for fixed J; for whirl solutions shown in
0

fig. 19). + + « ¢ ¢ . . 4 4 4 4 e 4w w e w v . . . .. Varisble to 10
e
L o(see fig. 15) .« . . . i 0.2 to 2.0
I t
=— (see fig. 15) . . . . . . ... 1.0 to 1.605
Y

Te v v v v v v o e Lo 20.01 to 0.036

U =3\
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2
TABLE III.- RANGES OF STIFFNESS RATIO (:i) WHICH
)
INCLUDE CLOSED REGIONS OF DIVERGENCE INSTABILITY
FOR A SYSTEM WITH SEPARATE ELASTIC CENTERS

IN PITCH AND YAW

[J = 2.65; propeller A]

2
' ()
oy Iz’ g
e IY
Lower Upper
limit limit
0.2 1.385 0.100 0.209
.5 1.15 . 301 .628
1.0 283.0 .692 1.445
1.5 1.151 .902 1.88
2.0 1.605 .863 1.80
a8 IZ'

Iy

for common elastic center.
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Propeller disk area

/—Engine

!

- Elastic center
in pitch

Elastic
center
in yaw

Pitching

D
| | .
l[/ \_9 spring

Yawing
spring

Figure l.- Idealized engine-propeller system. Directions indicated are

considered positive.



28

L-1575

x
"098/13 C0g = A fsdo G = =% = O3
€m
xg
fsdr LT = — = U 137 LT°¢ = @ f5 G*CT = @ ;098 aQU-3F GLn‘T = 41 m:i\momm-ﬁ TO®T00"0 = d
¢ b | A < a . 3 i1 S ¢ 6 ¢
T = — HQTT'0 = o= 6620 = = QL6000 == T =5~ == ‘0= k) o'z =1
G NH 9 H H 90
‘0 = 91 'y asrradoad 1oy va *bs) uoryenbs £31TTa®B3IS 9T3a8ND JO suorjnros TeOTdAL -z 2andtg
52 42 2
80" 2%3 0 80 0’ o ar 80" +0' Og._
T T g I T 9 r T T 9
sd> GOg'y = ) f21: .%B &) sdd Gpp =) o= qﬁ (@ '8dd ¢ = m_hslm =Y g0 q‘.b )
m m
= - I.@.I
—~ - -
i dz- g
\, o )
X / uoibas
alqoysun
80" A
y 90" ¥ <
) vo O
200 O
0 0
. &N 12



.08

.06

2§¢, 04

02

L-1575

-06

r Eq. (7) and (8) w,
—-0-— Eq.(2), cross plotted by Ty
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Figure 3.- Typical solutions of linear equation for neutral stability

(egs. (7)) of

1l _ .
Tl 0.00978;

glo

propeller A.

I
= 0.235; E% = 0.1184; L = 3,15,

2
Wy

Te = 0; J = 2.65; Cyy = 0;

Iz

Iy

e
A4 1
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2'4: —— Equation 9(a)
N o — — Equation 9(a) neglecting
~ quadratic term in V
~
~

20} N Unstable
~

.0, 1.0

02, 1.385

Vi ()
Iz' IY Wy

eq. (9a)) for propeller A with T, = 0; J = 2.65; (aa_i‘i’.e) =1

1 _ . & _
T = 0.00978; 5 = 0.235.

Figure 4.~ Propeller whirl boundaries for an undamped system (plot of

CLCT—1
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Figure T7.- Gyroscopic effect on whirl mode frequencies (plot of
eq. (13c)).
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Figure 12.- Effect of thrust coefficient T, on propeller whirl sta-
bility boundaries for propeller A with J = 2.65; Cyy = 0;

I I
-el = -—-Z- = . ai = l s ; = * _Z. = l h' E— = -
e T T 1; 5o .0; v 0.00978; T, 0.118k; 5 0.2%35. Sym
bols correspond to solid-line reference curves in figure 8.
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(@) J =18, CYG = 0. (&) J= 2.?5,‘ CYe = 0.

{d) J=265; CYe = 0.0885,
1 I i 1 s

0 4 8 .2 1.6 20
£
D

Figure 16.- Divergence boundaries for simplified engine-propeller com-
bination based on propeller blade characteristics for propeller A

ey I
with T, =0 enda X -ZZ-1,
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3r —— Propeller A
— —— Propeller B
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Figure 17.- Divergence boundaries for completely symmetrical system with
e
a common elastic center (that is, :—L—:‘y—e = 1.0 and —e‘t =30 = 1; also

Te = o).
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Figure 18.- Effect of different elastic centers in pitch and yaw on
divergence boundaries of propeller A with T, =0; J = 2.65;

Cyy = 0.085; % = 1.0.
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Figure 19.- Divergence and whirl boundaries for propeller A including
the effect of damping for a wideIrange of frequency ratios with
. . -0 o Z _ .. 1 X
T = 0; J = 2.65; Cyy = 0; e el 0.00978; T 0.118k.
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